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INTRODUCTION 

Penetrator warheads for use against hard and moderately hard targets require 
relatively thick cases to withstand impact loads. Thicker cases, however, can result in poor 
fragmentation characteristics (fragments too large) when these same warheads are used in an 
air- or ground-burst mode. While multi-wall cases consisting of two or more concentric 
cylinders can provide greatly enhanced fragmentation (for the same overall wall thickness), 
there is concern that such cases may reduce survivability compared to monolithic cases 

This experimental study examines the survivability of double-wall projectiles under 
target impact. Small hollow cylindrical steel projectiles (one single-wall and two double-wall 
designs) were fired at normal incidence against simulated concrete targets. Half the 
projectiles were filled with an explosive simulant, while the rest were left unfilled. Projectile 
impact velocities and penetration depths were measured. In addition, selected projectiles 
were cross-sectioned after test to reveal the deformation behavior of the double wall in more 
detail. 

The projectiles used in the current tests were identical (except for the double wall) to 
projectiles used in previous experiments on the effects of shear-control grids on 
survivability.1,2 On impact these latter projectiles tended to bulge near the front of the 
internal cavity and, at sufficiently high velocities, to fail in this region. A shear-control 
groove extending into the bulge region was found to reduce projectile survivability, while a 
groove outside this region had no effect. Based on these prior findings, it was felt that the 
location of the double wall in the present experiments might also be significant. 
Consequently, one double-wall projectile design had the double wall extending forward into 
the bulge region, while the other design had it starting to the rear of this region. 

In this report the double-wall projectile experiments are described, the results are 
analyzed, and conclusions pertaining to the survivability of double-wall warheads are given. 
In particular, the importance of keeping the double-wall transition point outside the primary 
failure zone and the contribution of an explosive filler to stiffening the double-wall case are 
discussed. 

Naval Weapons Center. Survivability of Penetrators with Circumferential Shear-Control Grooves, by J. C. 
Schulz and O. E. R. Heimdahl. China Lake, Calif., NWC, April 1981. (NWC TP 6275, publication UNCLASSIFIED.) 

 . Effect of Longitudinal Grooves on Survivability of Cylindrical Steel Projectiles Fired Against 
Simulated Concrete Targets, by O. E. R. Heimdahl and J. C. Schulz. China Lake, Calif., NWC, November 1982. (NWC 
TP 6402, publication UNCLASSIFIED.) 
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PROJECTILES 

The projectiles were flat-fronted steel cylinders, 2 inches long and 0.5 inch in 
diameter, each with a hemispherically-fronted internal cavity. The front of the cavity was 
0.25 inch from the front end of the projectile, and the cavity wall thickness was 0.04 inch. In 
the double-wall designs the inner half of the thickness of the cavity wall was machined away 
and replaced by a sleeve such that, after assembly (with an interference fit of 0.001 inch), the 
total wall thickness was again 0.04 inch. The transition to double wall was either 0.46 or 0.71 
inch from the front end of the projectile. The projectiles were machined from 4340 steel rods 
and were heat-treated (thus removing any residual stresses due to the interference fit) to a 
Rockwell "C" hardness of 38-40. The three projectile designs are shown in Figure 1. 

FILLER 

The internal cavities of half the projectiles were filled with plasticine (a wax-based 
modeling material), while the remainder were left unfilled. Plasticine is similar in density 
(1.6 g/cm3) and consistency to some explosives and thus makes a reasonable explosive 
simulant. 

TARGETS 

The simulated concrete targets were made of Thorite (trademark of Standard Dry 
Wall Products), a fast-setting, high-strength (3950 psi compressive strength) concrete 
patching compound consisting of sand, cement, and additives to promote rapid curing. The 
largest sand grains are about 0.04 inch in diameter. The targets were cured for 7 days prior to 
the firings. Consistency in target preparation is critical for assuring high strength and 
uniformity among targets. The preparation procedure is described in the reference of 
Footnote 1. 

TEST PROCEDURE 

The projectiles were fired from a smooth-bore, 50-caliber powder gun and impacted 
the targets at normal incidence. The targets were placed about 18 inches from the end of the 
barrel. Impact velocities were measured in the gun barrel with a photo diode system coupled 
to an interval counter. The apparatus is described more fully by Goldsmith and Finnegan. 

DESCRIPTION OF EXPERIMENTS 

* 

W. Goldsmith and S. A. Finnegan. "Penetration and Perforation Processes in Metal Targets At and Above 
Ballistic Velocities," Intl. J. Mech. Set., Vol. 13 (1971), pp. 843-866. 
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0.5 IN. 

(a) Single-wall. 
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(b) Double-wall starting at 0.46 inch from front end. 
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0.71  IN 

(c) Double-wall starting at 0.71 inch from front end. 

FIGURE 1. Cross-sectional Views of Three Projectile Designs. 
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EXPERIMENTAL RESULTS 

In all, 36 projectiles were fired: six unfilled and six filled for each of the three designs. 
Impact velocities ranged from about 1,600 to 2,600 ft/s. The results are summarized in Table 
1. Penetration depth versus impact velocity is plotted in Figure 2. Also plotted are 
penetration curves based on the theory of Bernard and Creighton.4 Except for projectiles that 
failed, these curves fit the data fairly well. 

The chart in Figure 3 shows the impact behavior of the projectiles within the velocity 
range studied. The solid vertical lines denote projectiles that survived (bulged), while the 
dashed vertical lines denote projectiles that failed (fractured). The greyed areas indicate 
ranges of uncertainty for the survival velocity (defined as the velocity below which the 
projectiles survive and above which they fail). Bracketing values for projectile survival 
velocity are given in Table 2. 

The appearance of the different projectile designs after impact near the upper velocity 
limit of their respective survival ranges is shown in Figures 4 through 6. Figure 4 shows 
unfilled and filled single-wall projectiles after impact at 2,495 and 2,410 ft/s, respectively. 
Figure 5 shows unfilled and filled projectiles with a double wall at the 0.46-inch location after 
impact at 1,960 and 2,230 ft/s. Figure 6 shows unfilled and filled projectiles with a double 
wall at the 0.71-inch location after impact at 2,285 and 2,460 ft/s. 

Photographs of unfilled and filled single-wall projectiles that failed are given in 
Figure 7. Photographs of unfilled projectiles of the three designs, cross sectioned after being 
fired at about 2,000 ft/s, are given in Figure 8. Similar photographs for filled projectiles fired 
at about 2,300 ft/s are given in Figure 9. The projectiles shown in Figures 9a and b had the 
filler removed before the pictures were taken. In Figure 9c the filler is still in place. 

ANALYSIS OF PROJECTILE BEHAVIOR 

Examination of the results of this study demonstrated the need to consider single- 
versus double-wall behavior, the location of the transition to double wall for the double-wall 
designs, and the presence or absence of explosive simulant filler. All these factors relate to 
the basic modes of failure observed in the test projectiles and, hence, to their survivability. 

Several points can be noted from the bracketing values for survival velocity given in 
Table 2. 

1. For either the filled or unfilled condition, double-wall projectiles had a higher 
survival velocity when the transition to double wall was at the 0.71-inch location. 

•~ 

f 

Defense Nuclear Agency. Projectile Penetration in Earth Material: Theory andComputer Analysis,hy R. S. 
Bernard and D. C. Creighton. Washington, D.C., DNA, November 1977. (Contract Report S-76-13, publication 
UNCLASSIFIED.) 
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UNFILLED PROJECTILES 

SINGLE-WALL SURVIVED 

DOUBLE-WALL AT 0.71 IN. 

I   I      DOUBLE-WALL AT 0.46 IN. ^  
I   I 

[l     I 

i     i 
'     I   FAILED 
H--f  
•      I 
I      l 

FILLED PROJECTILES 

1,600 

SINGLE-WALL 

DOUBLE-WALL AT 0.71 IN. 

1,800 

DOUBLE-WALL AT 0.46 IN. 

_L ± 
2,000 2,200 2,400 

IMPACT VELOCITY, FT/S 

2,600       2,700 

FIGURE 3. Impact Behavior of Filled and Unfilled Single-Wall and 
Double-Wall Projectile Designs. 

TABLE 2. Bracketing Values for Survival Velocity. 

Bracketing velocities, ft/s 

Projectile design Unfilled Filled 

Survived Failed Survived Failed 

Single wall 
0.46-inch double wall 
0.71-inch double wall 

2,495 
1,960 
2,285 

2,550 
2,015 
2,290 

2,410 
2,230 
2,480 

2,425 
2,250 
2,520 
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(a) Unfilled, 2.495 ft/s. 

(b) Filled. 2,410 ft/s. 

FIGURE 4. Photographs of Single-Wall Projectiles. 

10 
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(a) Unfilled, 1,960 ft/s. 

(b) Filled, 2,230 ft/s 

FIGURE 5. Photographs of Projectiles With Double Wall Starting 0.46 
Inch From Front End. 

11 
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(a) Unfilled, 2,285 ft/s. 

(b) Filled, 2,460 ft/s. 

FIGURE 6. Photographs of Projectiles With Double Wall Starting 0.71 
Inch From Front End. 

12 
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(a) Unfilled, 2,550 ft/s. 

(b) Filled, 2,305 ft/s. 

FIGURE 7. Photographs of Failed Single-Wall Projectiles. 

13 
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» 

(a) Single-wall, 2,015 ft/s. 

-:■- --■-:■.■,>;-:,->;..■  ■>>:■:■:.     '•.:■:,. 

(b) Double-wall at 0.46 inch, 2,035 ft/s. 

(c) Double-wall at 0.71 inch, 2,050 ft/s. 

FIGURE 3. Photographs of Cross Sectioned Unfilled Projectiles. 

14 
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(a) Single-wall. 2,280 ft/s. 

(b) Double-wall at 0.46 inch. 2.270 ft/s. 

(c) Double-wall at 0.71 inch. 2.330 ft/s. 

FIGURE 9. Photographs of Cross Sectioned Filled Projectiles. 

15 



Major behavioral features of unfilled double-wall penetrators involved forward 
movement of the sleeve and the location of case failure. 

For unfilled projectiles, the sleeve or liner does not appear to strengthen the case wall 
during the deformation process. Rather, the sleeve moves forward into the nose cavity 
independently of this process. If the impact velocity is sufficiently high, the nose cavity acts 
as a forming die and forces the metal from the forward end of the sleeve to conform to the 
hemispherical configuration of the cavity (Figures 8b and c). The projectiles were designed so 
that forward motion of the sleeve was restrained by a simple circumferential shoulder and the 
press-fit condition of the sleeve. This restraint was not adequate to prevent forward 
movement of the sleeve for the unfilled projectiles. 

Both the 0.46- and the 0.71-inch designs failed by circumferential fracturing at the 
transition to double-wall. The 0.71-inch design achieved a substantially higher impact 
velocity before failure (about 14 to 17%) than did the 0.46-inch design. Potential locations for 
circumferential fracturing of the case wall are apparent in the cross-sectional views of 
Figures 8b and c and in the profile views of Figures 5a and 6a. (The 0.46-inch design in 
Figure 8b has already fractured although the projectile remained together after the test.) 

16 
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2. For the double-wall projectile, filled projectiles achieved a substantially higher 
survival velocity than unfilled projectiles of the same design. 

3. For the unfilled projectiles, the single-wall design had a higher survival velocity 
than either of the double-wall designs. 

4. For the filled projectiles, the 0.71-inch double-wall design behaved at least as well 
as the single-wall design. 

SINGLE-WALL PROJECTILES 

For both filled and unfilled projectiles, case deformation occurs primarily as a 
"bulging" centered at the transition from hemispherical front to constant thickness case wall 
(0.46 inch from the front end). For filled projectiles, the bulge region is quite wide, while for 
unfilled projectiles it is relatively narrow. This effect can be seen in the two projectile profiles 
in Figure 4. The height of the bulge (increase in radius) increases with velocity and finally 
terminates in circumferential shear fracture as shown in Figure 7a, which is a photograph of 
an unfilled single-wall projectile fired at 2,550 ft/s. Failure of filled, single-wall projectiles 
involved, in addition to circumferential fracturing, axial splitting of the case because of the 
hydrostatic pressure exerted by the filler. This effect can be seen in Figure 7b, which shows a 
filled single-wall projectile fired at 2,305 ft/s. For single-wall projectiles, the presence of filler 
reduced the survival velocity about 4%. 

UNFILLED DOUBLE-WALL PROJECTILES 



NWC TP 6495 

FILLED DOUBLE-WALL PROJECTILES 

Of all tests conducted, this group was most interesting in terms of the deformation 
and failure processes. Filled double-wall projectiles achieved higher survival velocities than 
did unfilled projectiles of the same design. These velocity increases were about 12 to 14% for 
the 0.46-inch design, and about 9 to 10% for the 0.71-inch design. This increase in survival 
velocity is attributed to the hydrostatic pressure exerted by the filler which helps hold the 
sleeve in place thereby strengthening the case. 

For the 0.46-inch design, where the double-wall transition and single-wall bulge 
locations coincide, the deformation zone is quite narrow and the bulge sharply defined 
(Figures 5b and 9b). Failure initiates as a single circumferential fracture at the bulge. For 
the 0.71-inch design, where the double-wall transition lies to the rear of the primary bulge, 
the bulged region is considerably broader (Figures 6b and 9c). Failure can involve 
circumferential fracturing at either the primary bulge or the double-wall transition. 
(Circumferential fractures at both locations were observed in the one filled projectile of this 
design that failed.) Along with circumferential fracturing, axial splitting of the case can 
occur for any of the filled designs. 

For both double-wall designs, the pressure exerted by the filler reduces forward 
movement of the sleeve and presses it outward into the bulged region, allowing it to act as a 
structural member during the deformation process, thereby strengthening the case and 
increasing projectile survival velocity. Differences in sleeve behavior for unfilled and filled 
projectiles can be seen by comparing Figures 8 and 9, while corresponding differences in case 
behavior for unfilled and filled projectiles can be seen by comparing Figures 5a and b and 6a 
and b. 

CONCLUSIONS 

The purpose of this experimental study was to examine the possibly deleterious effect 
of a double-wall case on the survivability of impacting warheads. The following conclusions 
can be drawn. 

1. Double-wall case designs can be effectively used for penetrator weapons without 
reducing survival velocity provided that the double wall does not extend into the primary 
failure zone. If this zone is relatively small, the desirable fragmentation characteristics of the 
double wall can be maintained over the major portion of the case. 

2. The hydrostatic pressure exerted by the explosive on the double wall keeps the 
inner wall pressed against the outer wall thus allowing the inner wall to act as a structural 
member during the deformation process. This contributes greatly to maintaining survival 
velocity. 

3. Design consideration should be given to means of preventing forward motion of the 
inner wall during impact. The shoulder used in these experimental projectiles did not provide 
sufficient restraint. 

17 
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4. Previous studies concerning the effects of shear-control grids on projectile 
survivability ' indicate that shear-control grids could be employed on the double wall portion 
of the case to further enhance fragmentation. Such grids should not adversely effect 
survivability so long as the double wall itself does not extend into the primary failure zone. 

J 
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